
C++ Mini-Course
•Part 1: Mechanics
•Part 2: Basics
•Part 3: References
•Part 4: Const
•Part 5: Inheritance
•Part 6: Libraries
•Part 7: Conclusion

C Rulez!

C++ Rulez!

C++ Mini-Course

Part 1: Mechanics

C++ is a superset of C

• New Features include
– Classes (Object Oriented)
– Templates (Standard Template Library)
– Operator Overloading
– Slightly cleaner memory operations

Some C++ code

#ifndef __SEGMENT_HEADER__
#define __SEGMENT_HEADER__

class Point;
class Segment
{
public:

Segment();
virtual ~Segment();

private:
Point *m_p0, *m_p1;

};

#endif // __SEGMENT_HEADER__

Segment.h
#include “Segment.h”
#include “Point.h”

Segment::Segment()
{

m_p0 = new Point(0, 0);
m_p1 = new Point(1, 1);

}
Segment::~Segment()
{

delete m_p0;
delete m_p1;

}

Segment.cpp

#include “Segment.h”

#include <iostream>

#include

Insert header file at this point.

Use library header.

Header Guards
#ifndef __SEGMENT_HEADER__
#define __SEGMENT_HEADER__

// contents of Segment.h
//...

#endif

• To ensure it is safe to include a file more than
once.

Header Guards
#ifndef __SEGMENT_HEADER__
#define __SEGMENT_HEADER__

// contents of segment.H
//...

#endif

• To ensure it is safe to include a file more than
once.

If this variable is
not defined…

Define it.

End of guarded area.

Circular Includes

• What’s wrong
with this picture?

• How do we fix it?

#include “controller.h”

// define gui

// ...

gui.h

#include “gui.h”

class Controller
{
//...
private:

Gui* myGui;
//...
};

controller.h

Forward Declarations

• In header files,
only include what
you must.

• If only pointers to
a class are used,
use forward
declarations.

//Forward Declaration
class Controller;

// define gui

// ...

gui.h

//Forward declaration

class Gui;

class Controller
{
//...
private:

Gui* myGui;
//...
};

controller.h

Compilation

Preprocessor
Inlines #includes etc.

Compiler
Translates to machine code

Associates calls with functions

Linker
Associates functions with definitions

Object files

Executable

External Libraries, libc.so, libcs123.so

OK, OK. How do I run my Program?

> make

And if all goes well…
> ./myprog

C++ Mini-Course

Part 2: Basics

What is a pointer?

int x = 10;
int *p;

p = &x;

p gets the address of x in memory.

p

x10

What is a pointer?

int x = 10;
int *p;

p = &x;

*p = 20;

*p is the value at the address p.

p

x20

What is a pointer?

int x = 10;
int *p = NULL;

p = &x;

*p = 20;

Declares a pointer
to an integer

& is address operator
gets address of x

* dereference operator
gets value at p

Allocating memory using new
Point *p = new Point(5, 5);

• new can be thought of a function with
slightly strange syntax

• new allocates space to hold the object.
• new calls the object’s constructor.
• new returns a pointer to that object.

Deallocating memory using delete

// allocate memory
Point *p = new Point(5, 5);

...
// free the memory
delete p;

For every call to new, there must be
exactly one call to delete.

Using new with arrays
int x = 10;
int* nums1 = new int[10]; // ok
int* nums2 = new int[x]; // ok

• Initializes an array of 10 integers on the heap.
• C++ equivalent of the following C code
int* nums = (int*)malloc(x * sizeof(int));

Using new with multidimensional arrays

int x = 3, y = 4;
int** nums3 = new int[x][4];// ok
int** nums4 = new int[x][y];// BAD!

• Initializes a multidimensional array
• Only the first dimension can be a variable. The

rest must be constants.
• Use single dimension arrays to fake

multidimensional ones

Using delete on arrays
// allocate memory
int* nums1 = new int[10];
int* nums3 = new int[x][4][5];

...
// free the memory
delete[] nums1;
delete[] nums3;

• Have to use delete[].

Destructors

• delete calls the object’s destructor.
• delete frees space occupied by the object.

• A destructor cleans up after the object.
• Releases resources such as memory.

Destructors – an Example
class Segment
{
public:

Segment();
virtual ~Segment();

private:
Point *m_p0, *m_p1;

};

Destructors – an Example
Segment::Segment()
{

m_p0 = new Point(0, 0);
m_p1 = new Point(1, 1);

}
Segment::~Segment()
{

if (m_p0) delete m_p0;
if (m_p1) delete m_p1;

}

New vs Malloc

Malloc New
Standard C Function Operator (like ==, +=, etc.)

Used sparingly in C++; used
frequently in C

Only in C++

Used for allocating chunks of
memory of a given size without
respect to what will be stored
in that memory

Used to allocate instances of
classes / structs / arrays and
will invoke an object’s
constructor

Returns void* and requires
explicit casting

Returns the proper type

Returns NULL when there is
not enough memory

Throws an exception when
there is not enough memory

Every malloc() should be
matched with a free()

Every new/new[] should be
matched with a delete/delete[]

• Never mix new/delete with malloc/free

Classes vs Structs
• Default access specifier for classes is private; for structs it is public
• Except for this difference, structs are functionally the same as classes, but

the two are typically used differently: structs should be thought of as
lightweight classes that contain mostly data and possibly convenience
methods to manipulate that data and are hardly ever used polymorphically

struct Point {
int x;
int y;

// convenience constructor
Point(int a, int b)

: x(a), y(b)
{ }

// @returns distance to another point
double distance(const Point &pnt) {

int dx = m_x – pnt.x;
int dy = m_y – pnt.y;
return math.sqrt(dx*dx + dy*dy);

}
};

class Segment {
public:

Segment();
virtual ~Segment();

void setPoints(int x0, int y0, int x1, int y1);

protected:
Point *m_p0, *m_p1;

};

void Segment::setPoints(int x0, int y0, int x1, int y1) {
m_p0 = new Point(x0, y0);
m_p1 = new Point(x1, y1);

}

Syntactic Sugar “->”

Point *p = new Point(5, 5);

// Access a member function:
(*p).move(10, 10);

// Or more simply:
p->move(10, 10);

Stack vs. Heap
On the Heap /
Dynamic allocation

On the Stack /
Automatic allocation

drawStuff() {
Point *p = new Point();
p->move(10,10);
//...

}

drawStuff() {
Point p();
p.move(5,5);
//...

}

What happens when p goes out of scope?

Summary with Header File

begin header
guard

#ifndef __SEGMENT_HEADER__
#define __SEGMENT_HEADER__

class Point;
class Segment {

public:
Segment();
virtual ~Segment();

protected:
Point *m_p0, *m_p1;

};

#endif // __SEGMENT_HEADER__

Segment.hheader file

forward declaration

class declaration

constructor

destructor

end header guard

member variables

need semi-colon

C++ Mini-Course

Part 3: References

Passing by value
void Math::square(int i) {

i = i*i;
}

int main() {
int i = 5;
Math::square(i);
cout << i << endl;

}

Passing by reference
void Math::square(int &i) {

i = i*i;
}

int main() {
int i = 5;
Math::square(i);
cout << i << endl;

}

What is a reference?

• An alias – another name for an object.
int x = 5;
int &y = x; // y is a

// reference to x
y = 10;

• What happened to x?
• What happened to y?

What is a reference?

• An alias – another name for an object.
int x = 5;
int &y = x; // y is a

// reference to x
y = 10;

• What happened to x?
• What happened to y? – y is x.

Why are they useful?

• Unless you know what you are doing, do
not pass objects by value; either use a
pointer or a reference.

• Some people find it easier to deal with
references rather then pointers, but in the
end there is really only a syntactic
difference (neither of them pass by value).

• Can be used to return more than one
value (pass multiple parameters by
reference)

How are references
different from Pointers?

Reference Pointer

int &a; int *a;

int a = 10;
int b = 20;
int &c = a;
c = b;

int a = 10;
int b = 20;
int *c = &a;
c = &b;

C++ Mini-Course

Part 4: const

Introducing: const
void Math::printSquare(const int &i){

i = i*i;
cout << i << endl;

}

int main() {
int i = 5;
Math::printSquare(i);
Math::printCube(i);

}

Won’t compile.

Can also pass pointers to const
void Math::printSquare(const int *pi) {

*pi = (*pi) * (*pi);
cout << pi << endl;

}

int main() {
int i = 5;
Math::printSquare(&i);
Math::printCube(&i);

}

Still won’t compile.

Declaring things const

const River nile;

const River* nilePc;

River* const nileCp;

const River* const nileCpc

Read pointer declarations
right to left

// A const River
const River nile;

// A pointer to a const River
const River* nilePc;

// A const pointer to a River
River* const nileCp;

// A const pointer to a const River
const River* const nileCpc

Let’s Try References
River nile;

const River &nileC = nile;

// Will this work?
River &nile1 = nileC;

How does const work here?
void Math::printSquares(const int &j,
int &k) {
k = k*k; // Does this compile?
cout << j*j << “, ” << k << endl;

}

int main() {
int i = 5;
Math::printSquares(i, i);

}

Returning const references is OK

class Point {
public:

const double &getX() const;
const double &getY() const;
void move(double dx, double dy);

protected:
double m_x, m_y;

};

const double &
Point::getX() const {

return m_x;
}

Function won’t
change *this.

C++ Mini-Course

Part 5: Inheritance

How does inheritance work?

#include “Segment.h”
class DottedSegment : public Segment
{

// DottedSegment declaration
};

must include parent
header file

DottedSegment
publicly inherits from
Segment

virtual
• In Java every method invocation is dynamically

bound, meaning for every method invocation the
program checks if a sub-class has overridden
the method. You can disable this (somewhat) by
using the keyword “final” in Java

• In C++ you have to declare the method virtual if
you want this functionality. (So, “virtual” is the
same thing as “not final”)

• Just like you rarely say things are final in Java,
you should rarely not say things are virtual in
C++

pure virtual functions

• In Java, the “abstract” keyword means the
function is undefined in the superclass.

• In C++, we use pure virtual functions:
– virtual int mustRedfineMe(char *str) = 0;
– This function must be implemented in a

subclass.

Resolving functions

In Java:

// Overriding methods
public void overloaded(){
println(“woohoo”);
super.overloaded();

}

//constructor
public Subclass(){

super();
}

In C++:

// Overriding methods
void Subclass::overloaded(){

cout<<“woohoo”<<endl;
Superclass::overloaded();

}

//constructor
public Subclass() :

Superclass()
{ }

virtual

• Basic advice: for now make every method
virtual except the constructor

• Make you declare your destructors virtual;
if you do not declare a destructor a non-
virtual one will be defined for you

Segment();
virtual ~Segment();

this is important

C++ Mini-Course

Part 6: Libraries

Namespaces

• Namespaces are kind of like packages in
Java

• Reduces naming conflicts
• Most standard C++ routines and classes

and under the std namespace
– Any standard C routines (malloc, printf, etc.)

are defined in the global namespace because
C doesn’t have namespaces

using namespace
#include <iostream>
...
std::string question =

“How do I prevent RSI?”;
std::cout << question << std::endl;

using namespace std;

string answer = “Type less.”;
cout << answer << endl;

Bad practice to do in header files!

STL

• Standard Template Library
• Contains well-written, templated

implementations of most data structures
and algorithms
– Templates are similar to generics in Java
– Allows you to easily store anything without

writing a container yourself
• Will give you the most hideous compile

errors ever if you use them even slightly
incorrectly!

STL example
#include <vector>
using namespace std;

typedef vector<Point> PointVector;
typedef PointVector::iterator PointVectorIter;

PointVector v;
v.push_back(Point(3, 5));

PointVectorIter iter;
for(iter = v.begin(); iter != v.end(); ++iter){

Point &curPoint = *iter;
}

C++ Mini-Course

Part 7: Conclusion

Other Resources

• The Java To C++ tutorial on the website is
probably your best source of information

• The big thick book by Stroustrop in the
back of the Sun Lab is the ultimate C++
reference

• A CS 123 TA, or specifically your mentor
TA if you have been assigned one

Question and Answer
Session

	C++ Mini-Course ��
	C++ Mini-Course ��Part 1: Mechanics
	C++ is a superset of C
	Some C++ code
	#include
	Header Guards
	Header Guards
	Circular Includes
	Forward Declarations
	Compilation
	OK, OK. How do I run my Program?
	C++ Mini-Course��Part 2: Basics
	What is a pointer?
	What is a pointer?
	What is a pointer?
	Allocating memory using new
	Deallocating memory using delete
	Using new with arrays
	Using new with multidimensional arrays
	Using delete on arrays
	Destructors
	Destructors – an Example
	Destructors – an Example
	New vs Malloc
	Classes vs Structs	
	Syntactic Sugar “->”
	Stack vs. Heap
	Summary with Header File
	C++ Mini-Course ��Part 3: References
	Passing by value
	Passing by reference
	What is a reference?
	What is a reference?
	Why are they useful?
	How are references �different from Pointers?
	C++ Mini-Course ��Part 4: const
	Introducing: const
	Can also pass pointers to const
	Declaring things const
	Read pointer declarations �right to left
	Let’s Try References
	How does const work here?
	Returning const references is OK
	C++ Mini-Course ��Part 5: Inheritance
	How does inheritance work?
	virtual
	pure virtual functions
	Resolving functions
	virtual
	C++ Mini-Course ��Part 6: Libraries
	Namespaces
	using namespace
	STL
	STL example
	C++ Mini-Course ��Part 7: Conclusion
	Other Resources
	Question and Answer�Session

